ANALISIS COMPUTATIONAL FLUID DYNAMIC PENGARUH JARAK PROPELLER PADA CONTRA ROTATING PROPELLER TERHADAP GAYA DORONG PESAWAT TANPA AWAK

Alfian Yannu Alfaridzi(1*), Andri Kurniawan(2),

(1) Politeknik; Penerbangan Indonesia Curug
(2) Politeknik; Penerbangan Indonesia Curug
(*) Corresponding Author

Abstract


Propeller banyak digunakan dalam sistem propulsi pesawat tanpa awak. Propeller yang digunakan pada pesawat tanpa awak memiliki banyak variasi. Salah satu jenis propeller yang digunakan yaitu propeller dengan jenis contra rotating propeller. Penelitian ini berfokus untuk menganalisis pengaruh jarak propeller yang berputar berlawanan dengan gaya dorong yang dihasilkan. Penelitian ini menggunakan propeller APC Elektrik 9x6 dengan metode Computational Fluid Dynamic (CFD) dalam melakukan analisis. Analisis diawali dengan membandingkan hasil pengujian CFD single propeller dengan data eksperimen untuk validasi. Kemudian pengujian contra rotating propeller dilakukan dengan kecepatan putaran 5000 rpm dan kecepatan aksial 12 m/s. variasi jarak propeller dianalisis dengan 4 macam variasi yaitu 20 mm, 40 mm, 60 mm, dan 80 mm. Hasil pengujian CFD menunjukkan bahwa contra rotating propeller memiliki gaya dorong yang lebih besar dari single propeller. Kemudian hasil simulasi CFD pada contra rotating propeller menunjukkan bahwa koefisien gaya dorong terbesar yaitu 4,83 x 10-2 terdapat pada variasi jarak 60 mm.


Keywords


Propeller, Contra rotating propeller, thrust, , CFD, UAV

Full Text:

PDF

References


M. Palik and M. Nagy, “Brief history of UAV development,” Repüléstudományi Közlemények, vol. 31, no. 1, pp. 155–166, 2019, doi: 10.32560/rk.2019.1.13.

S. B. Wibowo, R. Sumiharto, and R. M. Hujja, “Desain Pengembangan Autopilot Pesawat Udara Tanpa Awak Menggunakan AVR-Xmega Sebagai Perangkat OBDH,” J. Teknol., vol. 8, no. No.1, pp. 11–19, 2015.

H. S. Saroinsong et al., “Rancang Bangun Wahana Pesawat Tanpa Awak (Fixed Wing) Berbasis Ardupilot,” J. Tek. Elektro dan Komput., vol. 7, no. 1, pp. 73–84, 2018, doi: 10.35793/jtek.7.1.2018.19195.

J. Matlock, S. Warwick, P. Sharikov, J. Richards, and A. Suleman, “Evaluation of energy efficient propulsion technologies for unmanned aerial vehicles,” Trans. Can. Soc. Mech. Eng., vol. 43, no. 4, pp. 481–489, 2019, doi: 10.1139/tcsme-2018-0231.

A. Kurniawan, S. Tinggi, P. Indonesia, and C. Tangerang, “Pengukuran dan Analisis CFD Performa Propeller Master Airscrew G / F 3 9x6,” vol. m, pp. 73–87, 2016.

R. W. Deters and M. S. Selig, “Static testing of micro propellers,” Collect. Tech. Pap. - AIAA Appl. Aerodyn. Conf., no. August, 2008, doi: 10.2514/6.2008-6246.

J. Gundlach, “Designing Unmanned Aircraft Systems: A Comprehensive Approach, Second Edition,” Des. Unmanned Aircr. Syst. A Compr. Approach, Second Ed., 2014, doi: 10.2514/4.102615.

J. Mieloszyk, C. Galiński, and J. Piechna, “Contra-rotating propeller for fixed wing MAV: Part 1,” Aircr. Eng. Aerosp. Technol., vol. 85, no. 4, pp. 304–315, 2013, doi: 10.1108/AEAT-Jan-2012-0008.

R. S. McKay, M. J. Kingan, and R. Go, “Experimental investigation of contra-rotating multi-rotor UAV propeller noise,” Acoust. 2019, Sound Decis. Mov. Forw. with Acoust. - Proc. Annu. Conf. Aust. Acoust. Soc., no. 1, pp. 1–10, 2020.

M. S. S. J.B. Brandt, R.w. Deters, G.K. Ananda, O.D. Dantsker, “UIUC Propeller Database,” 2015. https://m-selig.ae.illinois.edu/props/propDB.html (accessed May 15, 2021).

R. K. N. Suprapto and L. A. N. Wibawa, “Desain dan Analisis Tegangan Rangka Alat Simulasi Pergerakan Kendali Terbang Menggunakan Metode Elemen Hingga,” J. Tek. Mesin ITI, vol. 5, no. 1, p. 19, 2021, doi: 10.31543/jtm.v5i1.559.

Y. A. Nurkarim, Assllia Johar Latifah, and Sayekti Harits Suryawan, “Drone UAV Pemadam Kebakaran Otomatis,” Tek. Teknol. Inf. dan Multimed., vol. 1, no. 2, pp. 1–6, 2021, doi: 10.46764/teknimedia.v1i2.17.

S. Sugeng, R. A. Putra, R. F. Muslim, and Y. Septianto, “Unmanned Aerial Vehicle (UAV) for Mapping Plantation Area,” Telekontran J. Ilm. Telekomun. Kendali dan Elektron. Terap., vol. 7, no. 1, pp. 79–89, 2019, doi: 10.34010/telekontran.v7i1.1642.

Y. Li and C. Liu, “Applications of multirotor drone technologies in construction management,” Int. J. Constr. Manag., vol. 19, no. 5, pp. 401–412, 2019, doi: 10.1080/15623599.2018.1452101.

A. Gong and D. Verstraete, “Experimental testing of electronic speed controllers for UAVs,” 53rd AIAA/SAE/ASEE Jt. Propuls. Conf. 2017, pp. 1–10, 2017, doi: 10.2514/6.2017-4955.

D. L. Gabriel, J. Meyer, and F. Du Plessis, “Brushless DC motor characterisation and selection for a fixed wing UAV,” IEEE AFRICON Conf., no. September, pp. 13–15, 2011, doi: 10.1109/AFRCON.2011.6072087.

A. Gong, R. Macneill, and D. Verstraete, “Performance testing and modeling of a brushless dc motor, electronic speed controller and propeller for a small uav,” 2018 Jt. Propuls. Conf., pp. 1–15, 2018, doi: 10.2514/6.2018-4584.

AST, B17 Propeller Part 1 – Fundamentals & Construction. Perth: Air Service Training (Engineering) Limited, 2013.

A. B. Phillips, S. R. Turnock, and M. Furlong, “Evaluation of manoeuvring coefficients of a self-propelled ship using a blade element momentum propeller model coupled to a Reynolds averaged Navier Stokes flow solver,” Ocean Eng., vol. 36, no. 15–16, pp. 1217–1225, 2009, doi: 10.1016/j.oceaneng.2009.07.019.

M. K. Rwigema, “Propeller blade element momentum theory with vortex wake deflection,” 27th Congr. Int. Counc. Aeronaut. Sci. 2010, ICAS 2010, vol. 1, pp. 727–735, 2010.

K.-S. Min, B.-J. Chang, and H.-W. Seo, “Study on the Contra-Rotating Propeller system design and full-scale performance prediction method,” Int. J. Nav. Archit. Ocean Eng., vol. 1, no. 1, pp. 29–38, 2009, doi: 10.2478/ijnaoe-2013-0004.

P. M. Gerhart, A. L. Gerhart, and J. I. Hochstein, Fundamentals of Fluid Mechanics, 8th Edition. 2016.

C. Xu, “CFD Investigation into Propeller Spacing and Pitch Angle for a Ducted Twin Counter Rotating Propeller System,” Sch. Aerosp. Mech. Manuf. Eng. Coll. Sci. Eng. Heal. RMIT Univ., no. June, 2015.

J. Tu, G. H. Yeoh, and C. Liu, Computational fluid dynamics: A practical approach. 2018.

C. D. Argyropoulos and N. C. Markatos, “Recent advances on the numerical modelling of turbulent flows,” Appl. Math. Model., vol. 39, no. 2, pp. 693–732, 2015, doi: 10.1016/j.apm.2014.07.001.

H. K. Versteeg, W. Malalasekera, G. Orsi, J. H. Ferziger, A. W. Date, and J. D. Anderson, An Introduction to Computational Fluid Dynamics - The Finite Volume Method. 1995.

ANSYS, “ANSYS Fluent Tutorial Guide 18,” ANSYS Fluent Tutor. Guid. 18, vol. 15317, no. April, pp. 724–746, 2018.




DOI: https://dx.doi.org/10.31543/jtm.v6i2.755

Article Metrics

Abstract view : 256 times
PDF - 252 times

Refbacks

  • There are currently no refbacks.




Creative Commons License

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 Generic License. This Journal Published by Study Program of Mechanical Engineering-Institut Teknologi Indonesia.